Part Number Hot Search : 
SMAJ51A EBA05J 78L15 SMBJ160 56744 TE101RS RF740 AK5357KT
Product Description
Full Text Search
 

To Download AU5783 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 INTEGRATED CIRCUITS
AU5783 J1850/VPW transceiver with supply control function
Objective specification 1999 May 11
Philips Semiconductors
Philips Semiconductors
Objective specification
J1850/VPW transceiver with supply control function
AU5783
FEATURES
multiplexing
* Supports SAE/J1850 VPW standard for in-vehicle class B * Bus speed 10.4 kbit/s nominal * Drive capability 32 bus nodes * Low RFI due to output waveshape function * Direct battery operation with protection against +40V load dump
and 8 kV ESD
DESCRIPTION
The AU5783 is a line transceiver being primarily intended for in-vehicle multiplex applications. It provides interfacing between a J1850 link controller and the physical bus wire. The device supports the SAE/J1850 VPWM standard with a nominal bus speed of 10.4 kbit/s. For data upload and download purposes the 4X transmission mode is supported with a nominal bus speed of 41.6 kbit/s. The AU5783 provides protection against loss of ground conditions, thus ensuring the network will be operational in case of an electronic control unit loosing connection to ground potential. Low power operation is supported through provision of a sleep mode with very low power consumption. In addition an external voltage regulator can be turned off via the AU5783 transceiver to further reduce the overall power consumption. The voltage regulator will be activated again upon detection of bus activity or upon a local wake-up event.
* Bus terminals proof against automotive transients up to
+100V/-150V and 8kV ESD
* Power supply enable function * Very low sleep mode power consumption * 4X transmission mode (41.6 kbit/s) * Diagnostic loop-back mode * Thermal overload protection * 14-pin SOIC
ORDERING INFORMATION
TYPE NUMBER AU5783D AU5783D-T
PACKAGE NAME SO14 SO14 DESCRIPTION plastic small outline package; 14 leads; body width 3.9 mm; packed in tubes plastic small outline package; 14 leads; body width 3.9 mm; shipped on tape and reel VERSION SOT108-1 SOT108-1
TEMPERATURE RANGE -40 to +125 C -40 to +125 C
QUICK REFERENCE DATA
SYMBOL VBAT.op Tamb VBAT.ld VBOH VBI IBAT.lp tP tr PARAMETER Operating supply voltage Operating ambient temperature range Battery voltage Bus output voltage Bus input threshold Sleep mode supply current Propagation delay Bus output rise time Tx to Rx 14 load dump, 1s 250 < RL < 1.6 k 6.5 3.55 CONDITIONS 7 -40 MIN. 12 TYP. 16 +125 +40 8.0 4.2 90 25 MAX. UNIT V C V V V A s s
1999 May 11
2
Philips Semiconductors
Objective specification
J1850/VPW transceiver with supply control function
AU5783
BLOCK DIAGRAM
BATTERY (+12V) BAT
VOLTAGE R/F REFERENCE
TEMP. PROTECTION
Rs
TX
TX- BUFFER
OUTPUT BUFFER
BUS
NSTB
MODE Rld 4X/LOOP CONTROL
Vcc (+5V)
Rd
1.6V
LOAD SWITCH
LOAD
RX
VOLTAGE Vbat REFERENCE
INH WAKE-UP LWAKE CONTROL AU5783
GND
SL01224
Figure 1. Block diagram
1999 May 11
3
Philips Semiconductors
Objective specification
J1850/VPW transceiver with supply control function
AU5783
PINNING Pin configuration FUNCTIONAL DESCRIPTION
The AU5783 is an integrated line transceiver IC that interfaces an SAE/J1850 protocol controller IC to the vehicle's multiplex bus line. It is primarily intended for automotive "Class B" multiplexing applications in passenger cars using VPW (Variable Pulse Width) modulated signals with a nominal transmission speed of 10.4 kbit/s. The device provides transmit and receive capability as well as protection to a J1850 electronic module. A J1850 link controller feeds the transmit data stream to the transceiver's TX input. The AU5783 transceiver waveshapes the TX data input signal so as to minimize electromagnetic emission. The bus output signal features controlled rise & fall characteristic including rounded shape. A resistance being connected to the R/F control input sets the bus output slew rate. The LOAD output is connected to the physical bus line via an external load resistor Rld. The load resistor pulls the bus line to ground potential being the default state e.g. when no transmitter outputs an active state. This output ensures the J1850 network will not be affected by a potential loss of ground condition at an individual electronic control unit. The AU5783 includes a bus receiver with filter function to minimize susceptibility against interference. The logic state of the J1850 bus signal is indicated at the RX output being connected to the J1850 link controller. The AU5783 also provides advanced low-power modes to help minimize ignition-off power consumption of an electronic control unit. The bus receiver function is kept alive in the low-power modes. If an active state is being detected on the bus line this will be indicated via the RX output. By default the AU5783 enters the low-power standby mode when the mode control inputs NSTB and 4X/LOOP are not driven. Ignition-off current draw can be reduced further by turning off the voltage regulator being typically provided in an electronic control unit. This is supported by the activity indication function of the AU5783. In this application the activity indication flag INH will control external devices such as a voltage regulator. To turn-off the INH flag and thus the voltage regulator, the go to sleep command needs to be applied to the Network Standby power control input, e.g., NSTB = 0. The INH output is turned off after the sleep time-out period thereby, reducing the power consumption of an electronic control unit to an extremely low level. The activity indication flag INH will be turned on again upon detection of a remote wake-up condition (i.e. bus activity) or upon detection of a local wake-up condition or a respective command from the microcontroller. A local wake-up condition is detected when an edge occurs at the wake-up input LWAKE. The INH flag will also be turned on upon detection of a high input level at the mode control input NSTB. Activation of the INH output enables external devices e.g., a voltage regulator. This condition will power-up logic devices e.g., a microcontroller in order to perform appropriate action, e.g., activation of the AU5783 and the J1850 network. The AU5783 provides a high-speed data transmission mode where the bus output waveshape function is disabled. In this mode transmit signals are output as fast as possible thus allowing higher data rates, e.g. the so-called 4X mode with 41.6 kbit/s nominal speed. The AU5783 also provides a loop-back mode for diagnostic purpose, e.g. self-test of an electronic control unit. In loop-back mode the bus transmit and receive functions are disabled thus 1999 May 11 4
R/F
1
14
GND
GND
2
13
N.C.
4X/LOOP
3
12
BUS
NSTB
4
AU5783
11
LOAD
TX
5
10
INH
RX
6
9
LWAKE
N.C.
7 SO14
8
BAT
SL01225
Figure 2. Pin configuration
Pin description
SYMBOL R/F GND 4X/LOOP NSTB PIN 1 2 3 4 DESCRIPTION Rise/fall time control input; connect to ground potential via a resistor Ground Tx mode control input; low: normal mode; high: 4X mode; float: loopback Network STandBy power control input; low: transmit function disabled (low power modes); high: transmit function enabled Transmit data input; low: transmitter passive; high: transmitter active Receive data output; low: active bus condition detected; high: otherwise Not connected Battery supply input, 12V nominal Local wake-up input, edge sensitive Activity indication flag (inhibit) output high side driver; e.g., to control a voltage regulator. Active high enables the regulator Bus load in/output Bus line transmit/receive input/output, active high side driver Not connected Ground
TX RX N.C. BAT LWAKE INH
5 6 7 8 9 10
LOAD BUS N.C. GND
11 12 13 14
Philips Semiconductors
Objective specification
J1850/VPW transceiver with supply control function
AU5783
essentially disconnecting an electronic control unit from the J1850 bus line. The TX signal is internally looped back to the RX output. The AU5783 features special robustness at its BAT and BUS pins hence the device is well protected for applications in the automotive environment. Specifically the BAT input is protected against 40V load dump and jump start condition. The BUS output is protected against wiring fault conditions e.g. short circuit to ground and battery
voltage as well as typical automotive transients and electrostatic discharge. In addition, an over-temperature shutdown function with hysteresis is incorporated which protects the device under network fault conditions. In case of the die temperature reaching the trip point, the AU5783 will latch-off the transceiver function. The device is reset on the first rising edge on the TX input after a decrease in the junction temperature.
Table 1. Control input summary
Z = Input connected to high impedance permitting it to float. Typically accomplished by turning off the output of a microcontroller. X = Don't care; The input may be at either logic level. NSTB 1 1 1 1 1 1 0 or Z 1 -> 0 0 or Z 4X/LOOP 0 0 1 1 Z Z X X X TX 1 0 1 0 1 0 X X X normal operation normal operation 4X transmit 4X transmit loop-back loop-back standby (default state after power on), Note 1 go to sleep command, Note 4 sleep, Note 4 Mode Bus transmitter active passive active passive passive passive off off off BUS high float high float float float float float float RX (out) low bus state, Note 2 low bus state, Note 2 low high bus state, Note 5 bus state, Note 5 bus state, Note 5 high high high high high high high float, Note 3 float INH
NOTES: 1. After power-on, the AU5783 enters standby mode since the input pins NSTB and 4X/LOOP are assumed to be floating. In standby mode the voltage regulator is enabled via the INH output, and therefore power is supplied to the microcontroller. When the microcontroller begins operation it will normally set the control inputs NSTB high and 4X/LOOP to low state in order to start normal operation of the AU5783. 2. RX outputs the bus state. If the bus level is below the receiver threshold (i.e., all transmitters passive), then RX will be high. Otherwise, if the bus level is above the receiver threshold (i.e., at least one transmitter is active), then RX will be low. 3. INH is turned off after a time-out period. 4. For entering the sleep mode (e.g., to deactivate INH), the "Go To Sleep" command needs to be applied. The "Go To Sleep" command is a high-to-low transition on the NSTB input. When the "Go To Sleep" command is present, the INH flag is deactivated. This signal can be used to turn-off the voltage regulator of an electronic module. After the voltage regulator is turned off the microcontroller is no longer supplied and the NSTB input will be floating. The INH output will be set again upon detection of bus activity or occurrence of a local wake-up event. 5. In standby and sleep mode, the detection of a wake-up condition (e.g., high level on BUS) will be signalled on the output RX.
1999 May 11
5
Philips Semiconductors
Objective specification
J1850/VPW transceiver with supply control function
AU5783
ABSOLUTE MAXIMUM RATINGS
According to the IEC 134 Absolute Maximum System. Operation is not guaranteed under these conditions; all voltages are referenced to pin GND; positive currents flow into the IC; unless otherwise specified. SYMBOL VBAT VBAT.ld VBAT.tr VB0 VB1 VB.tr VWKE VWKR VINH VI ESDHBM1 PARAMETER Voltage on pin BAT Short-term supply voltage Transient voltage on pin BAT and pin LWAKE Bus voltage Bus voltage Transient bus voltage Voltage on pin LWAKE Voltage on pin LWAKE DC voltage on pin INH DC voltage on pins TX, RX, NSTB, 4X/LOOP, R/F ESD capability of pins BAT, BUS, LOAD and LWAKE ESD capability of all pins Maximum power dissipation Thermal impedance Operating ambient temperature Operating junction temperature Storage temperature Human body model, direct contact discharge, R = 1.5 k, C = 100 pF, Rld > 1.4 k; Rwake > 9 k Human body model, direct contact discharge, R = 1.5 k, C = 100 pF @ Tamb = +125 C with standard test PCB -40 -40 -40 via series resistor of Rwake > 9 k load dump, t < 1s SAE J1113 test pulses 3A and 3B, Rwake > 9 k VBAT < 2V, Rld > 1.4 k VBAT > 2V, Rld > 1.4 k SAE J1113, test pulses 3A and 3B, coupled via C = 1 nF; Rld > 1.4 k -150 -16 -10 -150 -0.3 -16 -0.3 -0.3 -8 CONDITIONS MIN. -0.3 MAX. +34 +40 +100 +18 +18 +100 +14 +34 +14 7.0 +8 UNIT V V V V V V V V V V kV
ESDHBM2 Ptot JA Tamb Tvj Tstg
-2
+2 205 120 +125 +150 +150
kV mW C/W C C C
1999 May 11
6
Philips Semiconductors
Objective specification
J1850/VPW transceiver with supply control function
AU5783
DC ELECTRICAL CHARACTERISTICS
7V < VBAT < 16V; -40 C < Tamb < +125 C; 250W < RL < 1.6 k; 1.4 k < Rld < 12 k; -2V < Vbus < +9V; NSTB = 5V; 4X/LOOP = 5V; Rs = 56 k; RX connected to +5V via Rd = 3.9 k; INH loaded with 100 k to GND; LWAKE connected to BAT via 10 k resistor; all voltages are referenced to pin 14 (GND); positive currents flow into the IC; typical values reflect the approximate average value at VBAT = 13V and Tamb = 25 C; unless otherwise specified. SYMBOL IBAT.sl IBAT.sb IBAT.p IBAT.wl IBAT.fl Tsd Thys Vih Vil Iihtx Iihnstb Iil Pin 4X/LOOP Vih Iih Vilb Iilb Vil -Iil -Iils Pin LWAKE Vi_wh Vi_Wl -II_w Pin INH -Ioh_inh -Iol_inh Vbat_POR INH high level output current INH off-state output leakage Power-on reset release voltage; Battery voltage threshold for setting INH output Low level output voltage Low level output current High level output leakage VINH = VBAT - 1V; 4.9V < VBAT < 16V VINH = 0V; NSTB = 0V NSTB = 1V, BUS = 0V, VBAT = 3.5V, verify INH = 0; VBAT = 4.4V, verify INH = 1 120 -5 3.5 500 +5 4.4 A A V Local wake-up high Local wake-up low Low level input current NSTB = 0V NSTB = 0V VLWAKE = 0V 5 3.9 2.5 25 V V A High level input voltage (High Speed Mode) High level input current Mid level input voltage (Loop back operation) Loopback mode input current Low level input voltage (Normal Mode) Low level input current Low level input current in standby and sleep mode NSTB = 5V V4X = 5V, NSTB = 5V NSTB = 5V NSTB = 5V NSTB = 5V V4X = 0V, NSTB = 5V V4X = 0V, NSTB = 0V 50 -5 2.7 50 1.3 -10 200 1.9 +10 +0.7 200 +5 V A V A V A A PARAMETER Sleep mode supply current Standby mode supply current Supply current; passive state Supply current; weak load Supply current; full load Thermal shutdown temperature Thermal shutdown hysteresis High level input voltage Low level input voltage TX high level input current NSTB high level input current Low level input current VTX = 5V VNSTB = 5V Vi = 0V 50 10 -2 Note 6 Note 6 TX = 0V; LWAKE = 0V TX = 5V, RL = 1.38 k, Note 7 TX = 5V, RL = 250 Note 7 Note 7 155 5 2.7 0.9 200 50 +2 CONDITIONS MIN. TYP. 90 210 3 16 45 190 15 MAX. UNIT A A mA mA mA C C V V A A A Pin BAT & thermal shutdown
Pins TX, NSTB
Pin RX Vol_rx Iol_rx Ioh_rx IRX = 1.6 mA, BUS = 7V, all modes VRX = 5V, BUS = 7V VRX = 5V, BUS = 0V, all modes 0 2 -10 0.45 20 +10 V mA A
1999 May 11
7
Philips Semiconductors
Objective specification
J1850/VPW transceiver with supply control function
AU5783
SYMBOL Pin BUS VBOh
PARAMETER BUS voltage; active
CONDITIONS TX = 5V; Note 8 8.3V1/ 2
MIN. 6.5
TYP. 8.0
MAX.
UNIT V
VBOhl
BUS voltage; low battery
VBAT -1.8
8.0
V
-IBO.LIM -IBO.LK1 -IBO.LK0, -IBO.LK5 -IBO.LKLB0, -IBO.LKLB5 -ILOG VBih VBil VBhy VBih_l
BUS short circuit current BUS leakage current; passive state BUS current with loss of battery BUS leakage current; loop back mode BUS leakage current at loss of ground Bus input high voltage Bus input low voltage Bus input hysteresis Bus input high voltage at low battery Bus input low voltage at low battery Bus input high voltage in standby and sleep mode
35 -50 -50 -50 -20 4.2
100 +50 +50 +50 +100
mA A A A A V
3.55 0.1 4.2 0.5
V V V
VBiL_L
VBAT - 3.5V
V
VBih_s
4.2
V
VBil_s
Bus input low voltage in standby and sleep mode
2.2
V
VBih_sl
Bus input high voltage in standby and sleep mode at low battery Bus input low voltage in standby and sleep mode at low battery
(VBAT + 2.4)
V
VBil_sl
1/ (V 2 BAT
- 1.6)
V
Pin LOAD Vld Vldoff Load output voltage Load output voltage unpowered 0.2 1 V V
NOTES: 6. TX = 0V; NSTB = 0V; 7V < VBAT < 13V; Tj < 125C; -1V < VBUS < 1V; LWAKE connected to BAT via 10k; INH not connected. 7. This parameter is characterized but not subject to production test. 8. For VBAT < 8.3V the bus output voltage is limited by the supply voltage. For 16V < VBAT < 27V the load is limited by the package power dissipation ratings. The duration of the latter condition is recommended to be less than 2 minutes.
1999 May 11
8
Philips Semiconductors
Objective specification
J1850/VPW transceiver with supply control function
AU5783
DYNAMIC CHARACTERISTICS
7V < VBAT < 16V; -40C < Tamb < +125C; -2V < Vbus < +9V; 1.4 k < Rld < 12 k BUS: 250 < RL < 1.6 k; 3nF < CL < 17nF; 1.7 s < (RL * CL) < 5.2 s Bus load A: RL = 1.38 k, CL = 3.3 nF; Bus load B: RL = 300, CL = 16.5 nF R/F pin: Rs = 56 k; INH loaded with 100 k and 30pF to GND RX pin: Rd = 3.9 k to 5V; CL = 30pF to GND; NSTB = 5V; 4X/LOOP = 0V Typical values reflect the approximate average value at VBAT = 13V and Tamb = 25C; unless otherwise specified. NSTB and 4X/LOOP rise and fall times < 10 ns. SYMBOL CTX tinhoff INH output function INH turn-off delay BUS = 0V, LWAKE = VBAT or 0V, goto sleep command, measured from NSTB = 0.9V to INH = 3.5V NSTB = 0V, BUS = 0V, measured from LWAKE = 3V to INH = 3.5V sleep mode, LWAKE = VBAT, measured from BUS = 3.875V to INH = 3.5V 20 200 s PARAMETER TX input capacitance Note 9 CONDITIONS MIN. TYP. 15 MAX. UNIT pF
tinhonl tinhonr
LWAKE to INH turn-on delay BUS to INH turn-on delay
8 8
100 40
s s
BUS output function tBOon; tBOoff tBrA tBrB tBfA tBfB tir Delay TX to BUS rising and falling edge Bus voltage rise time Bus voltage rise time Bus output voltage fall time Bus output voltage fall time Bus output current rise time from TX = 2.5V to BUS = 3.875V; bus load A and bus load B bus load A, 9V < VBAT < 16V, measured at 1.5V and 6.25V bus load B, 9V < VBAT < 16V, measured at 1.5V and 6.25V bus load A, 9V < VBAT < 16V, measured at 1.5V and 6.25V bus load B, 9V < VBAT < 16V, measured at 1.5V and 6.25V bus load B connected to -2V, 9V < VBAT < 16V, measured at 20% and 80% of load capacitor current bus load B connected to -2V, 9V < VBAT < 16V, measured at 20% and 80% of load capacitor current TX = high for 64 s, bus load condition A, measured at BUS = 3.875V, 9V < VBAT < 16V f = 530kHz to 1670kHz, bus load B connected to -2V, TX = 7.81kHz, 50% duty cycle, 9V < VBAT < 16V, Note 9 4X/LOOP = 1V, bus load B, 9V < VBAT < 16V, from TX = 1.8V to BUS = 3.875V measured from 1.8V on TX to 2.5V on RX NSTB = 5V, 4X = floating, measured from 1.8V on TX to 2.5V on RX 0.5 13 11 11 11 11 4 22 18 18 18 18 s s s s s s
tif
Bus output current fall time
4
s
twBh
BUS high pulse width
61.3
66.7
s
BHRM
Bus output voltage harmonic content; normal mode
70
dBV
tBO4Xon; tBO4Xoff tpon; tpoff tplbon; tplboff
TX to BUS delay in 4X mode
4
s
Delay TX to RX rising and falling edge in normal mode Delay TX to RX rising and falling edge in loop-back mode
13 13
25 25
s s
1999 May 11
9
Philips Semiconductors
Objective specification
J1850/VPW transceiver with supply control function
AU5783
SYMBOL BUS input function tDRXon; tDRXoff ttRX ttRXsl
PARAMETER BUS input delay time, rising and falling edge RX output transition time, rising and falling edge RX output transition time in standby and sleep mode, rising and falling edge BUS to RX delay in sleep and standby modes
CONDITIONS measured from VBUS = 3.875V to VRX = 2.5V NSTB = 5V, measured at 10% and 90% of waveform NSTB = 0V, measured at 10% and 90% of waveform NSTB = 0, LWAKE = VBAT, measured from BUS = 3.875V to RX = 2.5V 8
MIN. 0.2
TYP. 2 1 5
MAX.
UNIT s s s
tDRXsl
40
s
NOTES: 9. This parameter is characterized but not subject to production test.
TEST CIRCUITS
5.1V INH 100k R/F 56k TX GND
NSTB S1 4X/LOOP S2 RX
AU5783
BUS 1.5k 10.7k S3 1uF
LOAD BAT
LWAKE 3.9k 10k
+
I_LOG V_bat
SL01226
NOTE: 10. Check I_LOG with the following switch positions: 1. S1 = open = S2 2. S1 = open, S2 = closed 3. S1 = closed, S2 = open 4. S1 = closed = S2 Figure 3. Test circuit for loss of ground condition
1999 May 11
10
Philips Semiconductors
Objective specification
J1850/VPW transceiver with supply control function
AU5783
APPLICATION INFORMATION
C with J1850 Link Controller
+5V VCC VPWO VPWI port port 3.9 k
Rb 1k TX Ra 10 k 100 nF LWAKE RX NSTB 4X/LOOP INH BAT
5V Reg.
AU5783 Transceiver
LOAD 10.7 k 1% Rld 47 uH BUS R/F
+12V
GND
56 k 1% Rs
470 pF
SAE/J1850/VPW BUS LINE
SL01227
NOTES: 11. Value of Rld depends, e.g., on type of bus node. Example: secondary node Rld =10.7k, primary node Rld =1.5k. 12. For connection of the NSTB and 4X/LOOP pins there are different options, e.g., connect to a port pin or to VCC or to active low reset. Figure 4. Application of the AU5783 transceiver
1999 May 11
11
Philips Semiconductors
Objective specification
J1850/VPW transceiver with supply control function
AU5783
SO14: plastic small outline package; 14 leads; body width 3.9 mm
SOT108-1
1999 May 11
12
Philips Semiconductors
Objective specification
J1850/VPW transceiver with supply control function
AU5783
NOTES
1999 May 11
13
Philips Semiconductors
Objective specification
J1850/VPW transceiver with supply control function
AU5783
Data sheet status
Data sheet status Objective specification Preliminary specification Product specification Product status Development Qualification Definition [1] This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice. This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product. This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Production
[1] Please consult the most recently issued datasheet before initiating or completing a design.
Definitions
Short-form specification -- The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook. Limiting values definition -- Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information -- Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Disclaimers
Life support -- These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application. Right to make changes -- Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088-3409 Telephone 800-234-7381 (c) Copyright Philips Electronics North America Corporation 1999 All rights reserved. Printed in U.S.A. Date of release: 05-99 Document order number: 9397 750 06021
Philips Semiconductors
1999 May 11 14


▲Up To Search▲   

 
Price & Availability of AU5783

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X